

Spatio-Temporal Drug Delivery: Addressing the Unmet Medical Need

Sachin Mittal, Ph.D.

Sr Principal Scientist, Formulation Sciences, Merck Sharp & Dohme Corp, Kenilworth, NJ, USA

Drug Delivery & Formulation, Berlin Mar 27th - 29th, 2017

The opinions in this presentation are of the presenter and NOT of MSD

Outline

- Disease Area Trends and Unmet Medical Needs
- Role of Spatio-Temporal Delivery
- Spatio-Temporal Delivery
 - Long Acting Formulations
 - Enabling Sustained Target Tissue Concentrations
 - Mechanistic Understanding of Performance

2016 Drug Approvals

•

•

0

Value of 2016 Approvals

Delivery

۲

- Increasing Price Pressure in US Intensified Competition in many therapeutic areas such as **Diabetes and Oncology**
- Improvements in Regulatory Process
- Deeper knowledge of Biology Growing Diversity in Modality ۲

Expanding Modalities in Immuno-Oncology

- Increased Understanding of Tumor Biology, Immune Function and Immune Response to Cancer
- Expanding Modalities for Treatment and Prevention

Vaccines	Prime patient immune response to tumour-specific antigens	
Recombinant cytokines	Agonism or blockade of protein–protein immune pathways	
mAbs	Highly selective agonism or blockade of extracellular protein–protein immune pathways; long half-life; non-immunogenic (human or humanized)	
Autologous T cells	Tumour-targeted cytotoxicity of extracellular and intracellular tumour-specific antigens	
Small molecules	Uniquely suited for intracellular targets, but also equally applicable to cell surface or extracellular targets	

Expanding Target Space and Delivery Requirements in Immuno-Oncology

Growing Number of Targets under Clinical Interrogation
Requirement to localize in TME, Innate Immune Cells or Inside Cells

Adherence Rate Is Poor for Chronic Infectious Diseases and Neurological Disorders

Blaschke, et al. *Ann Rev Pharmacol Tox*. 2012;52:275-301. Bates B. *Eularis*. March 2010.

Long-Acting Parenterals (LAPs) Improve Cost-Effectiveness through Improved Adherence

Significant Delivery Opportunity with Unmet Medical Needs for Ocular Diseases

Unmet Need 🔫 New Targets/ Drugs

Public

High Growth Disease Areas Require Spatio-Temporal Drug Delivery to Maximize Patient Benefit

Immuno-oncology

Multiple Approaches Leveraged for Spatio-Temporal Drug Delivery

Spatio-Temporal Drug Delivery: Opportunities/ Challenges

Evolution of HIV Treatment and Prevention

Trials of oral and topical tendrovir-based PrEP show that these strategies reduce risk of HIV infection if they are used correctly and consistently. Higher adherence is directly linked to greater levels of protection.

Public

Source: Salim S. Abricol Kerim, CAPRISA

Evolution of HIV Treatment and Prevention

ViiV/ Janssen Developing Cabotegravir/ Rilpivirine LAP for HIV Treatment/ Pre-exposure Prophylaxis

Spreen, et al. 7th IAS Conference on HIV Pathogenesis, Treatment and Prevention. July 2013; Kuala Lumpur, Malaysia. NCT02938520; NCT02951052

MK-1 Long Acting Parenteral Suspension (HIV)

Highly Crystalline Solid

Low Aqueous Solubility (< 10 ug/mL)

- Daily Long-acting Dose projection: Approx 4.5 mg/day
 - Human Clearance vs efficacious trough levels required
- Sterile Microsuspensions and Nanosuspensions evaluated
 Chemically and Physically Stable

MK-1 LAP Suspension Provides 2-3 Month Sustained Pharmacokinetics in Preclinical Studies

MK-1 Long Acting Parenteral Suspension Provides Sustained Pharmacokinetics over >3 Months in Clinic

MK-1 LAP Projected to be Efficacious @300 mg QM

Arrows indicate the time of dose

Arrows indicate the time of dose

A QM dose of ca. 300 mg or a Q2M dose of ca. 600 mg could be projected to be efficacious when stacked assuming linear PK vs dose response

HIV LAPs	Formulation	QM Dose Volume	Q2M Dose Volume
MK-1 LAP	30% microsuspension	1 mL (projected)	2 mL (projected)
Comparing to TMC278 and GSK 744	30% nanosuspension 20% nanosuspension	2 mL 2 mL	3 mL 3 mL

Name: Raltegravir (Isentress; 2007) Mechanism: Integrase Strand Transfer Inhibitor (InSTI) Route and Dose: Oral, 400 mg BID Apparent terminal half-life – ca. 9 hrs Delivery Need: Long-Acting PrEP with effective levels maintained in target tissues over sustained periods (Spatio-Temporal)

Raltegravir (InStI) LAP Suspension Sustains Effective Plasma Levels over 2-4 Weeks in NHP and Mice

Formulations: Courtesy: Mittal et al

Raltegravir LAP Suppresses HIV-1 Replication in Infected Humanized BLT Mice

Public

Plasma RAL (µM)

M. Kovarova et al, J Antimicrobial Chemotherapy, 2016

Formulations: Courtesy: Mittal et al

22

🔁 MSD

Single SC Raltegravir LAP Dose Protects BLT Mice **Against Two HIV Vaginal Challenges**

Public

M. Kovarova et al, J Antimicrobial Chemotherapy, 2016

Formulations: Courtesy: Mittal et al

MSD MSD

Performance Prediction is a Challenge: In-vitro to Preclinical to Clinical Translation

Understanding Time Course of Tissue Response to IM Injection of Suspension: Impact on Bioperformance

Darville N, et al. *J Pharm Sci*. 2014;103:2072-2087 Darville N. et al. Toxicologic Pathology, 2015.

Mechanistic Understanding of Triamcinolone Acetonide (TA) Release from PLGA Microspheres

In-Vitro Release of TA (5% DL) from PLGA Microspheres (S/O/W) as a f(release media)

Doty, Mittal, Schwendeman et al, Eur J Pharm Biopharm, 2016

Understanding Polymer Mass Loss Kinetics as a f(Polymer Type, Buffer/ Media, pH)

MSD

Doty, Mittal, Schwendeman et al, Eur J Pharm Biopharm, 2016

Understanding Mechanism of Release: Correlating In-Vitro Release to Polymer Mass Loss Kinetics

- Low Molecular weight acid-terminated PLGA Formulations: Erosion + Diffusion through Polymer (w/ TC)
- Moderate Molecular weight ester-capped PLGA Formulations: Erosion
- Next Step: Release Mechanism in vivo and mechanistic strategies for IVIVCs

Summary and Conclusions

MSD

Public

Acknowledgments

- Peter Bakker¹
- Martin Behm
- Himanshu Bhattacharjee²
- Donna Carroll
- P. Markus Dey
- William Forrest
- David Goldfarb
- Irina Kazakevich
- Nazia Khawaja
- Amitava Mitra³
 - 1 Formerly at Oss, Netherlands
 - 2 Now with Pfizer
 - 3 Now with Sandoz
 - 4 Now Retired

- Claudia Neri
- Rositza Petrova
- Rosa Sanchez
- Luke Schenck
- Fang Tan
- Kelly Yee
- Cited Manuscript Authors
- Other Contributors M. Heslinga, P. Soltys, L. Liu, C. Frankenfeld, B. Xia, F. Kesisoglou, L. DeBusi, A. Acharya, L. Penn, E. Suryakusuma, C. Rodriguez, C. Lake, D. Staas, L. Crocker⁴, I. Triantafyllou, S. Khalilieh, Y. Patel

QUESTIONS

