

Analysis and Risk Assessment of "New" Mycotoxins

Michael Rychlik Chair of Analytical Food Chemistry Technical University Munich, Germany University of Queensland, Australia

Food Sure Amsterdam, 24.05.2017

Outline

- 1. Introduction "Old Mycotoxins"
- 2. Mycotoxin Analysis State-of-the-art
- 3. "Emerging" Mycotoxins: "New" Genus: Alternaria
- 4. "Modified" Mycotoxins-"Old" Genus: Fusarium

Mouldy Foods

Sometimes obviously spoiled and probably contaminated with mycotoxins

but in most cases not visibly contaminated

According to FAO 25 % of all foods are contaminated with mycotoxins (2010)

Introduction: Mycotoxins

Food Chemistry

- 300 400 secondary mould metabolites are recognized as mycotoxins
- Legal limits (EU):

Aflatoxins B1, B2, G1, G2 Ochratoxin A Patulin Zearalenone Deoxynivalenol (DON) Fumonisins B1, B2 (T2-toxin, HT2-toxin)

Emerging and Modified Mycotoxins

"New" mycotoxins: recently discovered, lack of reference compounds

"Emerging" mycotoxins: "New" mycotoxins

lack of analytical methods, exposure data, toxicity data

> "Modified" mycotoxins:

max. regulatory limits apply for "free" forms

comprehensive definition including the term

"Masked" mycotoxins

Outline

- 1. Introduction "Old Mycotoxins"
- 2. Mycotoxin Analysis State-of-the-art
- 3. "Emerging" Mycotoxins: "New" Genus: Alternaria
- 4. "Modified" Mycotoxins-"Old" Genus: Fusarium

Electrospray Ionisation (ESI) in LC-MS

LC-ESI-MS: Nobel prize in chemistry, 2002, John B. Fenn

Coeluting matrix and gradient influence ionisation efficiency of analytes

Ion suppression or enhancement

Need of suitable internal standards with same retention time:

stable isotopologues for compensation

Prinziple of the Stable Isotope Dilution Assay (SIDA)

Outline

- 1. Introduction "Old Mycotoxins"
- 2. Mycotoxin Analysis State-of-the-art
- 3. "Emerging" Mycotoxins: "New" Genus: Alternaria
- 4. "Modified" Mycotoxins-"Old" Genus: Fusarium

Alternaria toxins as "Emerging Mycotoxins"

© B. Rücker TUM

Genus Alternaria:

- → Characteristic black spores ("Black Fungi")
- → Species: A. alternata, A. citri, A. dauci, ... (in total approx. 40)
- \rightarrow known to invade vegetables
- \rightarrow approx. 70 mycotoxins known with a high structural variety

Labelled Standard for Tenuazonic Acid and Derivatization

Synthesis of [¹³C₆,¹⁵N]-TA

LC-MS/MS of Tenuazonic Acid

Contents of Alternaria Toxins in Foods (µg/kg)

Food	samples	AOH	AME	TA	Tentoxin	ATX1
Tomato products	20	1.4 - 8	0.2 - 3	10 - 250	3.2 ^a	n.d.
Paprika powder	12	31 ^a	21 ^a	2900 ^a	47 ^a	3.7 ^a
Millet	30	n.a.	n.a.	8 - 1200	n.d. – 4.1	n.d.
Sorghum feed	7	521 ^a	164 ^a	n.a.	55 ^a	43 ^a

^a mean value n.a. not analysed

highest contamination in millet from Germany

Risk Assessment of Alternaria Toxins in Foods

Exposure ng/kg b.w. x d	AOH	AME	TA	Tentoxin	ATX1
Average population	<mark>20</mark> (EFSA 2011)	<mark>2.5</mark> (EFSA 2011)	<13 (EFSA 2011)	90 (EFSA 2011) <u>5.6</u> Liu (2014)	
high exposure group (95% perc.)	<mark>45</mark> (EFSA 2011)	<mark>9</mark> (EFSA 2011)	Infants: max. <mark>3700</mark>		organic cereals ~ 1.2 Liu (2014)
TTC ng/kg b.w. x d	2.5	2.5	1500	1500	2.5

EFSA approach "Threshold of Toxicological Concern"

- in case of lacking toxicological data, concern is based on exposure data
- excess of TTC requires substantial toxicological data <u>and</u> decreasing the exposure with high priority

Conclusions and Outlook

Bavarian Official Food Authority:

"substantial doubts about harmlessness of these products"

⇒ "unfit for human consumption" as it is unacceptable for reasons of contamination (Art. 14, 2. (b) Regulation (EC) 178/2002)

as "contaminant levels shall be kept as low as can reasonably achieved by following good practices" (Art. 2, 2. Council Regulation 315/93)

Producers were called on reduction of TA contents "warning limit" 500 µg/kg

Need for more toxicity data: chronic toxicity, NOAEL

Outline

- 1. Introduction "Old Mycotoxins"
- 2. Mycotoxin Analysis State-of-the-art
- 3. "Emerging" Mycotoxins: "New" Genus: Alternaria
- 4. "Modified" Mycotoxins-"Old" Genus: Fusarium

Fusarium species

- Fus. graminearum/culmorum:
- Fus. langsethiae/sporotrichioides:
- Fus. avenaceum/tricinctum:

Fusarium toxins

- toxic metabolites of plant pathogenic fungi
- Harming human and animal health
- Losses in yield, grade, end-use quality of cereals
- Impairment of solving, malting and brewing properties

type-B Trichothecenes

type-A Trichothecenes

Enniatins + Beauvericin

(Emerging Mycotoxins)

visually sound malt

red and black kernels

LC-MS/MS Analysis: Multi SIDA

New definition of modified mycotoxins

including "masked" mycotoxins

1st level	2nd level	3rd level	4th level	example
Free mycotoxins				Aflatoxin B1, DON, 3- acetyl-DON
Matrix-associated mycotoxins	Complexes, physically dissolved or trapped			
	Covalently bound			Fumonisines bound to starch, OTA- and DON-oligosaccharides
Modified mycotoxins	Biologically modified	Functionalised (phase 1-metabolites)		Aflatoxin B1-epoxide
		Conjugated (phase 2-metabolites)	Conjugated by plants (= masked mycotoxins according to ILSI)	DON-3-glucoside
			Conjugated by animals	DON-3/8/15-glucuronide, HT2-3/4-glucuronide
			Conjugated by fungi	ZEN-14-sulfate
		Differentially modified		Deepoxy-DON (= DOM-1)
	Chemically modified	Thermally formed		norDON A-C, N-carboxymethyl-FB1
		Non-thermally formed		Hydrolysed fumonisines, DON-sulfonate

Source: Rychlik et al. (2014) Mycotoxin Research 30: 197-205

Fusarium Toxins: Occurrence in International Beers

TWN=Taiwan, CHN=China, CAN=Canada, BEL=Belgium, USA=United States of America, IRL=Ireland, JP=Japan, ISR=Israel, CZ=Czech Republic, MEX=Mexico

Fusarium Toxins: Occurrence in International Beers

TWN=Taiwan, CHN=China, CAN=Canada, BEL=Belgium, USA=United States of America, IRL=Ireland, JP=Japan, ISR=Israel, CZ=Czech Republic, MEX=Mexico

Fusarium toxins: Exposure of beer consumers

- DON, D3G, 3AcDON and ENN B found in beer samples
- Contamination level of analyzed beer samples rather low (below regulatory limits)
- Even heavy drinkers moderately exposed

Current analysis only sees the tip of the iceberg?

Outlook 2017:

Rychlik et al. (2017) Foodomics as a Promising Tool to Investigate the Mycobolome, Trends in Analytical Chemistry In press

Many Thanks to the Group and Funding!

DAAD

German Acaemic Exchange Service

Bundesministerium für Wirtschaft und Technologie

