Next-Generation Food Authentication Analysis Technology

Yannick Weesepoel – RIKILT, Wageningen University and Research

Food Sure Summit – May 23rd 2017 - Amsterdam

@YWeesepoel

Onderzoeker in Fraude en Authenticiteit van Voedsel bij RIKILT - Wageningen UR. Gepromoveerd Levensmiddelenchemicus.

- **Wageningen**, Nederland
- & wageningenur.nl/en/Persons/Yan...
- Joined June 2014

10 Photos and videos

Pinned Tweet Yannick Weesepoel @YWeesepoel · Feb 10 KvW over Saffraan! keuringsdienstvanwaarde.kro.nl/seizoenen/2017... @Pathh1

L+ Follow Promoted

Find friends

Trends · Change

#BulkAlert Nu 10 dagen lang Super Deals bij bol.com! Promoted by bol.com

Food Authenticity & Analysis

Market transition

Source: Citizen Science Innovation Initiative 4

Trends in Food Analysis

The RIKILT method to detect toxins in seafood

Toxins in seafood are harmful to human health. Therefore, it is of utmost importance to detect them. Current methods to test toxins in seafood cost hundreds of thousands of mice annually worldwide. In the Netherlands, we do not use mice, but an analytical method, although it cannot detect all toxins yet. Therefore, as an alternative, RIKILT uses a cell based effect assay. This test is inexpensive, efficient, animal friendly, and offers the consumer, ultimately. more safety.

Toxins produced by algae sometimes end up in fish and shellfish.

Smartphone sensors – Expected very soon

In Today's Talk

Past - Case Study: Chicken fillets

Macro component: Moisture/Protein Micro component: Chilled vs. Thawed

Increase in animal welfare awareness

Reallife

Day-to-day Temp.

Ref. Material?

Stray

lighť

Day-to-day equipment

Sensor position

Day-to-day

light

Human

factor

Floc variation Slaughter House Packaging Transportation

1.200

Sample plan

How to 'teach' your scanner

Representative sample set

Statistic/Chemometric transformation and algorithm

Database maintenance

Spectroscopic data is relatively chaotic

Machine learning: e.g. Support vector machine

Moisture-Protein ratio by machine learning

Predicted as: Chilled

Thawed

Lessons learned from the fillet case

Moisture and protein regression promising

■ 95% correct prediction of chilled products and 80% for thawed products → In the lab!

Transferability outside lab?
How do you cover all chicken meat in the world?
Relatively expensive scanners for an authenticity problem

 \rightarrow NIR has limitations! Realistic expectations

Present: Consumer spectroscopics

Smartphone

Spectroscopic analysis

Short-wavelength near infrared (SW-NIR) 750-1059 nm

Modelling

Classification

To which of the defined classes does the sample belong?

Estimation

What is the concentration of x in the sample?

Powders: Adulteration of ground nutmeg

Pilot: Approximately 30% adulteration detectable ²⁰

Frozen produce: Fish Glaze

Pilot: Accuracy approximately 3%

21

Liquids: Distilled spirits

< 厶

0K/s 🕸 🔟 🛜 ₊II 📖 15:37

1

Fruits: Sensing of firmness

Sensing of Fruits

What happens when consumers start using the models?

PhD

Mom

Gf(!) - Dad

Phd

Student

Me

- What about...
 - Toxins, allergens, pesticides, ...
 - Shelf life of products
- Universal device'?

Future: Sensor fusion

"Portable photonic miniaturised smart system for on-the-spot food quality sensing"

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 732541

Sensor combination & data fusion for a more universal food scanner

Future: FoodSmartphone

4

N

P

α-rbST IGF-1 100 IGF-1 250

IGF-1 250

a-rbST

Ν

IGF-1 100

P

P

IGF-1 100 IGF-1 250

M

N

IGF-1 250

α-rbST

N

N

P

N

5

N

P

Ν

IGF-1 100 a-rbST

6

N

α-rbST IGF-1 100 IGF-1 100

GF-1 250

IGF-1 250

N

a-rbST

N

N

P

P

N

P

Immunoassay *microarray* on your smartphone (2015) for biomarkers!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 720325

FoodSmartphone objectives

- Smartphone-based (bio)analytical screening tools
- User-friendly, rapid, integrated sample prep.
- Image data handling, communication, apps
- On-site demonstrators: pesticides, allergens, mycotoxins, food spoilage, food spoilage, marine toxins

On-going initiatives on enabling citizen science

ontwikkeling van een publiek private samenwerkina

Further reading...

Popular Science (Dutch) – Quest 05/2017

Scientific literature (English)

Analytical Methods

CRITICAL REVIEW

Cite this: Anal. Methods, 2015, 7, 9401

View Article Online View Journal | View Issue

Point-and-shoot: rapid quantitative detection methods for on-site food fraud analysis – moving out of the laboratory and into the food supply chain

David I. Ellis,*^a Howbeer Muhamadali,^a Simon A. Haughey,^b Christopher T. Elliott^b and Royston Goodacre^a

Thank you! – Q & A - Credits

Chicken fillet case:

Consumer spectroscopics:

RIKILT – Authenticity: Saskia van Ruth Saskia.vanruth@wur.nl

- Nutmeg case (RIKILT): Laura Lanseros de las Heras & Isabelle Silvis (isabelle.silvis@wur.nl)
- Fish Glaze: Paul Hiscoe (paul@ph-7.co.uk) PH Seven London www.ph-7.co.uk
- Distilled spirits (RIKILT): Stevan van der Hoek, Yannick Weesepoel
- Fruits:
 - Wageningen Food & Biobased Research, Computer Vision: Lydia Meesters (<u>lydia.meesters@wur.nl</u>) & Hendrik de Villiers (<u>hendrik.devilliers@wur.nl</u>)
 - Pieter Dekker (RIKILT): (<u>pieter.dekker@wur.nl</u>)

Michel Nielen & Wim Beek <u>Michel.nielen@wur.nl</u> <u>Wim.beek@wur.nl</u>

http://phasmafood.eu/ Yannick Weesepoel Yannick.weesepoel@wur.nl